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EXECUTIVE SUMMARY 

Roadway vulnerability assessments are often used to predict which routes are currently, or may in 

the future, be subject to natural hazards. However, these assessments are often conducted for 

individual roadways and therefore do not assess to what degree road closures affect the 

connectivity of road networks – i.e., the ability for a user to access other roads in the network. A 

consequence of this is that future roadway retrofits, such as raising the elevation of roadways, 

could alter network connectivity in a way that has cascading impacts on community accessibility 

during extreme events.  

In this project, we use network science and network analysis to understand the connectivity of 

coastal road networks during extreme events. By treating road intersections as ‘nodes’ and road 

segments as ‘edges’, we successively remove nodes based on increasing elevations (akin to 

flooding or another extreme event) to identify the threshold where the entire network starts to break 

apart. The network analysis in this project focuses on flood hazards in coastal settings – including 

barrier islands and more inland communities along the Neuse and Pamlico estuaries (Oriental, NC 

and the larger Pamlico County; Davis, NC and the larger Down East region) – but the methodology 

is broadly applicable to other regions of North Carolina and additional natural hazards (e.g., 

landslides). The associated research products from the network analysis include maps of the 

critical nodes – the intersections that break network connectivity when not functioning – for each 

location. These maps can be used to inform locations for longer-term monitoring by NCDOT 

during disruptions to ensure public safety. A comparison of network analysis and critical nodes 

for small communities (e.g., Davis) versus larger regions (e.g., Down East) highlighted that the 

scale, size, and geography of the region of interest impact the location of the critical node.  

The network analysis was supplemented with data from new land-based flood sensors deployed at 

critical intersections. In Davis, NC, the location of the critical node informed the placement of two 

sensor systems developed as part of this project: the Sunny Day Flood Sensors (SuDS) and the 

Tiny Machine Learning Cameras (TinyCamMLs). Elsewhere in Down East Carteret County, the 

placement of sensors was determined by community-identified hotspots (Sea Level and Cedar 

Island) and the needs of NCDOT (North River Bridge). The sensors are providing data on road 

closures for comparison to the network model, and we will continue to maintain the sensors for 

use by NCDOT moving forward through leveraged projects. Additional research products from 

the flood sensors include new automated methods for extracting information about flooded roads 

and road closures from imagery using machine learning and computer vision techniques. In this 

report we also illustrate use cases of the flood data for improved understanding of flood frequency 

and durations along coastal roadways, and how this differs from marine-based estimates of 

flooding. For example, using SuDS data from the NCDOT-sponsored sensor in Sea Level, NC, we 

found that the roadway in Sea Level flooded 122 days over a year-long study period. 

Comparatively, flood thresholds derived from the tide gauge in Beaufort indicate 9-31 days of 

flooding over the same period (depending on which flood threshold is used). More accurate 

information on coastal flooding can inform where and how we invest resources in building more 

resilient transportation networks.  
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1. Introduction and research objectives 

Extreme events such as hurricanes, elevated river levels, and landslides cause road closures across 

North Carolina by causing flooding, damage to roadways, debris deposits, and traffic accidents.  

Roadway vulnerability assessments are often used to predict which routes are currently, or may in 

the future, be subject to natural hazards (e.g., Velasquez-Montoya, Sciaudone, Smyre, and 

Overton, 2021). However, these assessments are often conducted for individual roadways and 

therefore do not assess to what degree road closures affect the connectivity of road networks – i.e., 

the ability for a user to access other roads in the network. In coastal settings such as narrow barrier 

islands, network connectivity may hinge on a single roadway (e.g., NC Highway 12) or a series of 

critical roadway intersections (e.g., Carolina Beach). As low-lying environments, barrier islands 

are particularly exposed to coastal hazards such as storm-driven flooding and sea-level rise, which 

climate change will only exacerbate (Melillo et al., 2014; Wong et al., 2014; Williams, 2013; 

Moser et al. 2012; Zhang and Leatherman, 2011; McGranahan et al. 2007). It is unclear how 

roadway connectivity on barrier islands will change with climate impacts, or moreover, with 

subsequent roadway retrofits.  

Over the coming decades, population projections estimate that the number of people living 

in coastal areas, including barrier islands, will continue to increase (Neumann et al., 2015). Thus, 

continuous population growth and coastal development in hazard-prone zones will increase the 

risk of environmental disasters in these areas. Increased exposure to extreme coastal events extends 

to transportation networks, on which developed barrier islands depend to allow the mobility of 

residents and tourists and ensure the supply of goods and services. Due to their limited number, 

coastal roadways also constitute the main terrestrial route of evacuation, emergency response and 

recovery operations during and after a disaster in these islands (Velasquez-Montoya et al., 2021; 

Anarde et al., 2018, Frazier et al., 2013). The disruption, congestion or destruction of sections of 

the road network can therefore lead to major socio-economic impacts, isolating entire 

neighborhoods, compromising evacuations, and preventing people from accessing critical services 

(Jenelius and Mattson, 2015; Mattson and Jenelius, 2015; Spanger-Siegfried et al., 2014). 

Moreover, the restoration of other critical networks (electrical system, water supply, 

communications, etc.) also depends on the ability to transport people and equipment to the 

damaged site (Chen et al., 2002). In the barrier islands of the USA, unforeseen  road network 

disruptions – mechanisms that cause reductions in mobility or increases in the costs necessary to 

maintain the desired levels of mobility (Markolf et al., 2019) – are not uncommon during 

hurricanes, tropical storms and nor’easters (Velasquez-Montoya et al., 2021; Spanger-Siegfried et 

al., 2014; Nordstrom, 2004; Dolan and Lins, 2000; Nordstrom and Jackson, 1994). For instance, 

in NC, coastal routes have a documented history of closures during storms and hurricanes 

(Velasquez-Montoya et al., 2021; Spanger-Siegfried et al., 2014; Hardin et al., 2012; Krynock et 

al., 2005).  

To mitigate impacts that affect the serviceability of transportation infrastructures, 

especially during disasters, a growing body of research has focused on assessing the functionality 

of these networks under different extreme events such as earthquakes (Lam & Shimizu, 2021; 
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Khademi et al., 2015) or floods (Abdulla & Birginsson, 2020; Kasmalkar et al., 2020; Abdulla et 

al., 2019; Anarde et al., 2018). Official organizations have also published technical guidance and 

methods to assess the exposure, sensitivity, and adaptive capacity of the transportation system to 

extreme weather and climate effects (Filosa et al., 2017; Douglass and Krolak 2008). Graph theory 

is one of the most commonly used mathematical frameworks to assess road network 

susceptibility to failure.  

Reducing the original network to a two-dimensional matrix of ‘nodes’ (road intersections) 

connected by ‘edges’ (road segments) simplifies the connectivity analysis within the network. 

However, this approach ignores the crucial importance of the third dimension (elevation) for 

identifying road sections susceptible to flooding and assessing network functionality under real-

world events (Versini et al., 2010). Roadway elevations, for instance, can be linked to extreme 

water levels, which allow the study of network disruptions under a wider range of feasible flooding 

events (Kaskalmar et al., 2020; Anarde et al., 2018). The altitude of the network elements can also 

be used to estimate the likeihood  of flooding and predict the propagation of the flood through the 

system (Abdulla and Birgisson, 2021; Yuan et al., 2021). Nevertheless, disruptions in 3D 

infrastructure networks are still an area of emerging research (Wang et al., 2019), and very few 

studies have attempted to assess road susceptibility to coastal flooding in dynamic regions such as 

the barrier islands of the USA (Velasquez-Montoya, 2021). Floods are a special type of network 

disturbance considered locally more destructive than random damage (Wang et al., 2019), and are  

a current frontier of research. 

 

1.1. Research objectives 

Current roadway vulnerability frameworks used by NCDOT – and throughout the United States – 

do not assess the susceptibility of the road network as a whole to coastal flood hazards. A 

consequence of this is that future roadway retrofits, such as raising the elevation of roadways, 

could alter network connectivity in a way that has cascading impacts on community accessibility 

during future flood events. Resilient decisions for roadway retrofits should account for alterations 

to network connectivity. Hence, in this project, our principal goal is to improve predictions of 

roadway vulnerability to natural hazards by using network science and network analysis to 

evaluate the vulnerability of whole roadway networks to failure, both now and in the future. This 

goal supports the objectives outlined in the NCDOT Resilience Strategy Report (2021) to support 

robust vulnerability assessments of coastal roadways to assist with future planning efforts. The 

secondary goal of this project is to develop new methods that utilize computer vision and machine 

learning to automate the identification of flooded roadways from imagery.  

 

This final report outlines the steps that were taken to meet the stated goals, including: 

1. Evaluation of network connectivity on NC barrier islands for a range of node removal 

proxies. We adapted an existing network model, developed by Co-PI Goldstein and 

colleagues for node removal by elevation. 
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2. Extension of the network model and analysis to more inland locations. This allowed 

us to test the viability of the method in different (non-barrier island) settings that may be 

subject to other flood drivers (e.g., wind, rainfall, river runoff) or geographic influences. 

3. Extend data of road closures using land-based measures of flooding. Low-cost cameras 

and in situ sensors were developed and deployed at flood hotspots to enrich the data 

available for testing the network model. New automated methods for extracting 

information about flooded roads and road closures from imagery were developed using 

machine learning and computer vision techniques. 

 

The final report is structured to first provide an overview of the research methodology (Section 2), 

followed by results related to the road network analysis (Section 3), two use cases of land-based 

measures of flooding (Section 4), and an analysis of the utility of machine learning tools for flood 

identification (Section 5).  

 

 
Figure 1. An example network model or ‘graph’ of Ocean Isle, NC. In graph theory, ‘nodes’ 

correspond to roadway intersections and ‘edges’ correspond to roadways. 
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2. Research methodology 

2.1. Road networks 

Road networks can be schematized as a ‘graph’, which is the mathematical construct of a network: 

in this framework, roadway intersections are ‘nodes’ and streets are ‘edges’ that link nodes 

together (Figure 1). Thinking of road networks as general nodes and edges allows us to use the 

same ideas from network science (and the study of social networks) to study roadway connectivity. 

For example, a key theme in network analysis is examining the behavior of the ‘giant component’, 

which is the largest group of connected nodes. In a fully functioning road network, the giant 

component is the entire network — all roads are connected. The susceptibility of a network to the 

failure of its components is typically explored by deactivating or removing nodes and calculating 

metrics that address network functioning, such as measuring a percolation process (Newman, 

2010; Schneider et al., 2011; Iyer et al., 2013; Li et al., 2014; Wang et al., 2019). By sequentially 

deactivating nodes, the functionality of the entire network decreases. For example, travel between 

two nodes (intersections) becomes impossible or requires long travel distances (and time) on the 

network. Successively removing road network nodes (intersections) based on some criteria (such 

as increasing elevations, akin to flooding or another extreme event) can eventually lead to a 

threshold where the entire network starts to break apart. The specific threshold crossing — the 

breaking — is quantified by looking at the number of nodes in the giant component and the second 

largest component as nodes are removed.  

 

 

 

Figure 2. Examples illustrating the methodology used to (a) explore the size decay of the first and 

second giant-connected components (GCC), (b) identify the critical node that leads to the 

fragmentation of the network, and (c) quantify overall network robustness to elevation-based node 

removal. The barrier example shown here is the drivable network at Ocean Isle, North Carolina, 

USA. In (a), the vertical axes show the first (left) and second (right) GCC size as a fraction of 

nodes in the original network, as a function of the fraction of nodes removed (q). The red dot in 

panels (a) and (b) marks the critical node in the GCC and real physical space, respectively. In 

panel (c), robustness R is taken as the area (light green) under the decay curve for the first GCC 

(bold green). The dashed gray line shows the inverse 1:1 reference line, indicating the theoretical 

maximum for R = 0.5. Maps like the example shown in (b) for all 72 barrier road networks with 

>100 nodes can be found in the data repository. 
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As an example, we can visualize this process using a network model developed by PI 

Goldstein and colleagues for Ocean Isle, NC. Nodes were sequentially removed based on a ranked 

list of elevations, from lowest to highest, mimicking a simplified “bathtub” flooding scenario (i.e., 

other topological metrics such as road grades or average street/’edge’ elevations were not 

explored). The first panel in Figure 2 tracks both the size of the first giant component (black) and 

the second giant component (grey) as a certain fraction of nodes (q) are removed. Notably, once 

the lowest 40% of nodes are removed (q = 0.4), the first giant component suddenly drops in size 

(the shift downward in the black line) and the second giant component suddenly increases in size. 

This is the threshold crossing when the network breaks into two large pieces, and strands part of 

the road network. The network crosses a critical threshold at qc, when the first giant component 

completely disintegrates and the size of the second giant component becomes maximal (Li et al., 

2014; Wang et al., 2019). Figure 2b visualizes this moment of breakup into geographic space. The 

active (dry) intersections are shown in green, the flooded intersections are shown in black, and red 

is the intersection that causes catastrophic breakage when it becomes flooded, stranding the west 

side of the island from the east side. 

Aldabet, Goldstein, and Lazarus (2022) also explored the sensitivity of roadway 

connectivity to random node removal. They found that road networks on barrier islands are much 

more prone to breaking when nodes are randomly removed than when removed sequentially by 

elevation. Our workflow for investigating North Carolina barrier island road networks is shown in 

Figure 3. We discuss each step in the sequence below.  

To isolate barrier island road networks, we used digitized perimeters of all NC barrier 

islands from the open dataset of Mulhern et al. (2017) & (2021) and extracted the drivable road 

networks from OpenStreetMap (OSM) with OSMnx (Boeing, 2017). Cast as networks, road 

intersections are encoded as nodes and road segments are edges. We excluded other possible 

transportation pathways such as bikeways and walkways. 

 

 

 

Figure 3. Methodological workflow for assessing robustness to flood-induced failures in road 

networks on US Atlantic and Gulf barrier islands. Abbreviations are as follows: OSM is Open 

Street Map; OSMnx is an analytical toolbox (Boeing, 2017). CUDEM is the NOAA Continuously 

Updated Digital Elevation Model (Amante et al., 2021; CIRES, 2014). GCC is the giant-connected 

component of a networkor the large cluster of nodes connected in the original network. 

Of all NC barrier islands considered, all overlap with tiles currently available in the NOAA 

Continuously Updated Digital Elevation Model (CUDEM), a set of 1/9 Arc-Second resolution 
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bathymetric and topographic tiles for the coastal USA (Amante et al., 2021; CIRES, 2014). For 

statistically meaningful metrics of network structure, we restricted our analysis to barriers with 

drivable road networks of at least 100 nodes. We determined the elevation of each node (road 

intersection) in each network by spatially querying the CUDEM dataset. 

The susceptibility of a network to the failure of its components is typically explored by 

nullifying or removing nodes and calculating metrics that reflect network functioning (Abdulla & 

Birgisson, 2021; Iyer et al., 2013; Li et al., 2015; Newman, 2010; Schneider et al., 2011; Wang et 

al., 2019). For example, when enough of the network is removed, travel between any two nodes 

(intersections) becomes impossible or requires long travel distances (and time) on the network. 

We removed nodes from a network based on a ranked list by elevation – from lowest to highest – 

in contrast to removing nodes randomly (a common approach, e.g., Albert & Barabási, 2002). 

Node removal in this way mimics a simplified "bathtub" flooding scenario (e.g., Abdulla & 

Birgisson, 2020; Wang et al., 2019), which assumes that nodes become nullified because they are 

actively flooded, damaged by flooding, and/or unusable because of debris and/or sand deposited 

on the road. We assumed that the removal of a node causes the immediate disconnection of all its 

connected edges. This work thus considered node removal exclusively; edge removal could also 

be explored, with the inclusion of other contextual physical metrics such as road grade, lowest 

street elevation, or average street elevation. Network metrics were calculated using NetworkX 

(Hagberg et al., 2008). 

For road networks, the original network is connected in a single large cluster – the giant-

connected component (or giant component). As nodes in the original network are serially removed, 

the network breaks into smaller networks. Here, we tracked the size of these subnetworks relative 

to the size of the giant component. Specifically, as the fraction of nodes removed (q) increases and 

the first giant component degrades, we tracked the size of the second-largest cluster – the second 

giant-connected component (Figure 2a). The network crosses a critical threshold at qc, when the 

first giant component fragments and the size of the second giant component becomes maximal (Li 

et al., 2015; Wang et al., 2019). Generally, the higher qc  – that is, the more nodes that can be 

removed before the giant component fragments – the less prone the network is to failure (Newman, 

2010). The critical threshold (qc) can be linked to a specific node that causes the failure of the 

network (Figure 2b) and to the elevation of that node, which we refer to as the critical elevation 

(zc). 

2.1.1. Extreme water levels 

Comparison of coastal barrier islands solely based on topographic elevation (i.e., one barrier is 

higher or lower than another) is not meaningful unto itself because of local differences in tidal 

forcing and extreme water level statistics. For example, road networks on higher-standing barriers 

subject to frequent extreme storms might be more prone to flooding than road networks on lower-

lying barriers subject to fewer storms. To provide meaningful comparisons among the broad 

geospatial distribution of barriers in our sample, we recast all node (intersection) elevations to 

local annual exceedance probabilities of extreme water events.  
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Extreme water levels have been used to examine the direct and indirect impacts of coastal 

floods on transportation systems and assess the susceptibility of the network to flood-induced 

failure (Fant et al. 2021; Habel et al., 2020; Jacobs et al., 2018; Pezza & White, 2021). Annual 

exceedance probabilities and average recurrence intervals are commonly applied for infrastructure 

design and assessment of flood risk (Apel et al., 2004, 2006; Hackl et al., 2018; Haigh et al., 2014; 

Sweet & Park, 2014; Vitousek et al., 2017; Wahl et al., 2017). Average recurrence intervals, also 

known as return periods, provide an estimation of the time elapsed between events of the same 

magnitude; annual exceedance probability refers to the likelihood that high-water levels exceed a 

certain elevation in any given year (Haigh et al., 2014). For example, a flood with an annual 

exceedance probability of 0.01 corresponds to an event that has a 1% chance of annual occurrence, 

or an average recurrence interval of 100 years. (Return period can be understood as the inverse of 

exceedance probability.) 

Extreme value analysis (EVA) – the branch of statistics that deals with the estimation and 

prediction of rare values within a series (Coles, 2001) – has been applied broadly to analyses of 

observed and simulated extreme high-water levels to quantify the probability of occurrence (and/or 

return period) of extreme events (Vitousek et al., 2017; Wahl et al., 2017; Zervas, 2013). One of 

the most common EVA methods is block maxima, which considers the maximum of all recorded 

values within a block of time (i.e., days, months, or years) and approximates extreme values using 

a Generalized Extreme Value distribution (GEV) (Coles, 2001; Zervas, 2013). The GEV 

distribution is described by three parameters – location (μ), scale (σ), and shape (ξ) – that refer, 

respectively, to the center of the distribution, the deviation around the mean, and the tail behavior 

of the distribution. The shape parameter determines the extreme distribution used: Gumbel (ξ = 0), 

Frèchet (ξ > 0) or Weilbull (ξ < 0).  Using long-term monthly tide gauge records from the 112 US 

stations operated by the Center for Operational Oceanographic Products and Services (CO-OPS), 

Zervas (2013) followed a GEV approach to characterize the distributions of extreme high and low 

water levels and produce exceedance probability curves for each station.  

For each barrier island in this analysis, we generated extreme high-water level annual 

exceedance probability curves by sampling the Gumbel distribution described by the three reported 

GEV parameters (Zervas, 2013) for the tidal station closest to that barrier by straight-line distance. 

We then estimated annual exceedance probabilities for the critical node of each barrier network, 

which we refer to as the critical exceedance, ec. We thus linked each critical node to a specific 

annual exceedance probability. All calculations were done using the Python ecosystem, e.g., Scipy 

(Virtanen et al., 2020) and Numpy (Harris et al., 2020). Note that the choice of extreme value 

analysis applied to a data set has the greatest effect on events with the lowest likelihood of 

occurrence (Wahl et al, 2017). Because high-likelihood events are of particular interest to us in 

this analysis, the Gumbel distributions that we use to reproduce the estimates reported by Zervas 

(2013) are sufficient: a different method of extreme value analysis would result in different 

probabilities for the low-likelihood events from these tide gauges but estimates for high-likelihood 

events will be effectively the same. 
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2.1.2. Network robustness 

Having focused on identifying a single critical node for each island and defining a critical threshold 

for each barrier road network in terms of elevation (and exceedance probability), we next examined 

the overall network robustness of each barrier. The purpose of this step is to provide a summary 

metric for network functioning that includes but is not limited to the occurrence of the critical 

threshold: for example, determining how much of the original road network is still connected when 

any given percentage of the nodes is removed. Calculating whole-network robustness permitted 

us to compare barrier road networks in terms of their entire architecture, rather than solely by 

comparing aspects of a single critical node (e.g., its elevation and the related exceedance value). 

We used the robustness metric R proposed by Schneider et al. (2011), which measures the 

summed size of the giant-connected component as nodes are removed (Figure 2c): 

    𝑅 =
1

𝑁
∑ 𝑠(𝑄)𝑁

𝑄=1       (1)  

where N refers to the total number of nodes in the network, Q to the number of nodes removed and 

s(Q) is the fraction of nodes in the giant component after removing Q nodes. The normalization 

factor 1/N allows comparison between networks of different sizes. The resulting R values range 

between 1/N (for a star graph) to 0.5 (a fully connected network; Schneider et al., 2011). Note that 

we evaluated network robustness in two ways: by removing nodes in rank order of elevation 

(lowest to highest) and by random node removal (e.g., Wang et al., 2019). Other studies have 

investigated how R changes with non-random but abstracted network disruptions (Iyer et al., 

2013), and how R varies in transportation networks, specifically, with different types of disruptions 

(Dong et al., 2020b; Wang et al. 2019). 

All scripts associated with the network model can be found on the Github repository 

(https://github.com/NCRoadNetworks/NC_barrier_roadnetworks).  

2.1.3. Compare mathematical models of network failure to real-world examples 

To test the efficacy of the network models developed as part of Objective 1, we ground check the 

network analyses and location of critical nodes using both existing NCDOT data on roadway 

floods on NC barrier islands. Existing data on the actual range of critical nodes for each NC barrier 

island – that is, which roadways close or isolate sections of barrier islands during extreme events 

due to flooding – came from NCDOT data of past roadway incidents via TIMS and informal 

interviews with regional members of NCDOT.  

2.1.4. Extend the network model and analysis to an inland location 

We further extended the network analysis to 4 inland locations: Kinston (as recommended by 

NCDOT personnel); Davis and the larger Down East region; and Oriental and the larger Pamlico 

County. Extending the analysis to inland locations allows us to evaluate the broader applicability 

of the method to other settings. 

https://github.com/NCRoadNetworks/NC_barrier_roadnetworks
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2.2. Flood sensors 

Objective 3 of this project involved the development and deployment of new, land-based flood 

sensors along vulnerable roadways to extend data of road closures for comparison to the network 

model and also to better understand the frequency and causes of flooding. Here we describe two 

low-cost sensors that were deployed at flood hotspots in Down East Carteret County as part of this 

project, and elsewhere throughout the state (as part of leveraged projects): the Sunny Day Flood 

Sensors (SuDS) and Tiny Machine Learning Cameras (TinyCamMLs).  

2.2.1. Sunny Day Flood Sensors (SuDS) 

PI Anarde maintains a network of flood sensors, coined SuDS, in five coastal communities in 

North Carolina (Figure 4). The flood sensors consist of pressure sensors for measuring in situ water 

levels and subaerial cameras for monitoring flood extent. Pressure sensors are located in storm 

drains or adjacent to roadways in community-identified hotspots and relay data in real time to the 

camera, which also contains a 

cellular gateway. Flood data is 

displayed on a webapp for 

communication of flood hazards 

(Gold et al., 2023). In some 

locations, flood data has been 

collected every 6 minutes since 

2022.  

 

Figure 4. Sunny Day Flood 

Sensors (SuDS) in Down East 

Carteret County. (top) Example 

images from the sensors at Sea 

Level (left) and at the North 

River Bridge (right). (bottom) 

The location of all SuDS 

sensors in NC.  

 

As part of this project, we deployed 4 SuDS in Down East Carteret County: one each in 

Sea Level, Davis, and Cedar Island and one at the North River Bridge. The Sea Level sensor is our 

longest-running sensor (installed April 2023) and Cedar Island is our most recent sensor (installed 

November 2024). The sensor location at the North River Bridge was selected by NCDOT 

personnel as being particularly important for assessing network connectivity. The sensor in Davis, 

NC was selected based on the network analysis and is located at the location of the critical node. 

For privacy, only the most recent image is displayed on the web app and images are blurred outside 

http://go.ncsu.edu/sunny
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of public spaces. Images are archived for scientific purposes, including the development of 

automated flood detection algorithms (described below). As described in Section 4 below, we also 

generate annual flood counts for each sensor to better understand flood frequency, durations, and 

the seasonality of flood events. 

 

2.2.2. Tiny Machine Learning Cameras (TinyCamMLs) 

The causes of flooding can be highly specific to the region in which it's occurring; therefore, it 

can be difficult to predict the full extent of land-based floods using only tide gauges. We 

developed a low-cost (<$400), easily maintainable camera system that we deploy in coastal 

regions to monitor flooding. Our device - a Tiny Camera with Machine Learning, or 

TinyCamML - is a small, solar-powered, microcontroller-based camera that uses on-device 

machine learning to classify images taken every 6 minutes as containing a “Flood” or “No 

Flood.” TinyCamMLs transmit only the classifications to a website in real time, providing 

updates during flood events. Images of roadways are never transmitted (and can be set up to not 

even be saved), protecting the privacy of the local communities in which they are deployed. 

 

Figure 5. (a) Fully 

assembled 

TinyCamML.    

(b) The Boron and 

OpenMV Cam 

microcontrollers 

mounted onto the 

custom PCB 

board. (c) Side 

view of the fully 

assembled 

TinyCamML.  

 

 

2.2.2.1. Electronics and housing 

The TinyCamML hardware is composed of four parts: a 5W 6V solar panel and 5V 36Wh external 

battery (Voltatic Systems, Brooklyn, NY, USA), a Boron microcontroller (Particle, San Francisco, 

CA, USA), an OpenMV Cam H7 Plus microcontroller (OpenMV, Atlanta, GA, USA), and a 

MOSFET switch. The solar panel powers the Boron, which in turn powers the OpenMV Cam via 

the MOSFET switch. All electrical components are soldered onto a custom PCB board, which is 
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fixed onto a 3D-printed electronics tray and secured inside a Polycase enclosure (Polycase, Avon, 

OH, USA). The polycase is fastened to the solar panel by a variety of 3D-printed parts. We use a 

Formlabs 3 SLA printer and Tough 2000 resin for all parts (Formlabs, Boston, MA, USA). Specific 

part numbers for all components, 3D designs, and a circuit diagram can be found on the Github 

repository (https://github.com/TinyCamML).  

2.2.2.2. Software 

TinyCamML software is designed so the system takes an image, classifies it as “Flooded” or “Not 

Flooded” according to the onboard machine learning model, and then transmits the classification 

over cellular to a website for logging. This is accomplished with both microcontrollers. Once 

woken, the OpenMV takes a photo and runs the ML model. The classification is then sent to the 

Boron over a universal Asynchronous Receiver/Transmitter (UART), and the Boron publishes it 

to a Google sheet in real time using its cellular capabilities. The Boron sends its timestamp data to 

the OpenMV Cam over UART, so the OpenMV Cam saves a timestamp with each classification 

(i.e., flooded or not flooded) in its data log. If enabled, the OpenMV Cam can also save images to 

its onboard microSD card, which can be used to further train the model. Images are never 

transmitted, only classification scores. This saves on bandwidth and maintains privacy. Currently, 

the OpenMV Cam does not classify images when the scene brightness is below a threshold, which 

prevents unnecessary operation during low- and no-light conditions (i.e., nighttime) when accurate 

classifications are not currently possible. The source code for the Boron microcontroller was 

developed using the Particle extension in Visual Studio Code version 1.95.3 and device OS 

firmware 6.1.0. OpenMV Cam source code was developed on the OpenMV IDE version 4.1.5 and 

device OS firmware 4.5.5.  All source code is available on the Github repository.  

2.2.2.3. ML model: binary classification 

The first step to developing a generalizable ML model is to assemble a larger training dataset. We 

use over 14,000 images from deployed TinyCamML devices as well as imagery from the SuDS 

cameras (Gold et al., 2023), and publicly available datasets of flooding. Images are taken from 

different locations, vantages, and times of day. We use a single labeler for consistency but note 

that we perform an interrater experiment with non-training data, and these results can be seen in 

section 4.2 below. The initial distribution of labeled images is strongly skewed toward nonflooded  

imagery, so we use ClimateGAN (Schmidt et al., 2021) on unflooded images to produce synthetic 

flood imagery to balance the dataset. We are then left with 17,448 total images, with a 50/50 split 

between flood and no flood images. 

We train a deep-learning-based classifier model using TensorFlow (Abadi et al., 2016)  

leveraging the MobilenetV2 architecture (Sandler et al., 2018) and relying on ImageNet weights.  

We replace the last classification layers of the model with a global average pool, a 1024-neuron 

dense layer, and a 2-neuron dense layer (corresponding to our two classes, flood and no flood). 

We use 224px images, and all 3 channels (RGB). 

https://github.com/TinyCamML
https://www.zotero.org/google-docs/?mcJhkb
https://www.zotero.org/google-docs/?Zpw2kw
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We train the model with a 60/25/15 training/validation/test split with early stopping, using 

categorical cross-entropy as the loss function, Adam as the optimizer (learning rate of 3x10 -3), a 

dropout rate of 50% between the dense layers, a batch size of 16, an early stopping callback 

(patience of 10 epochs), image augmentations on the training data (rotation, width and height shift, 

shear, zoom, horizontal and vertical flips), and calculating the binary accuracy and a confusion 

matrix as a performance metric. Note that during training only the new classification layers are 

trainable. The trained model is then integer quantized using TensorFlow Lite micro (David et al., 

2021) for inference on the OpenMV. The quantized model has a binary accuracy of 84% with the 

test set.  

2.3. Machine learning methods for automated image classification 

New automated methods for extracting information about flooded roads and road closures from 

SuDS imagery were developed using machine learning and computer vision techniques. Here we 

detail two methods: image segmentation and depth mapping. All processing scripts for the image 

rectification and depth mapping workflow can be found on the Github repository 

(https://github.com/rtmccune/depth_mapping). 

2.3.1. Image segmentation 

We applied deep learning techniques to analyze Imagery from the SuDs sensors, specifically image 

segmentation. In recent years, Deep Learning models based on the UNet (Ronneberger et al., 2015) 

and the Residual UNet (Liu et al., 2019; Zhang et al., 2018) have become the standard in state-of-

the-art Earth science applications involving image segmentation.  

 

 

Figure 6. A scene from the Carolina Beach SuDS camera (left) and the segmentation label overlay 

created by a human labeler and used as training data (right): red is road, blue is water, yellow is 

building, purple is vegetation, and green is sky. 

https://www.zotero.org/google-docs/?t8Xq3J
https://www.zotero.org/google-docs/?t8Xq3J
https://github.com/rtmccune/depth_mapping
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In the case of image segmentation, training data consists of label imagery where each pixel 

is categorized into any number of predetermined discrete classes (i.e., water, road, vegetation, 

building, sky, etc). We use a state-of-the-art Human-in-the-loop system (Buscombe, et al., 2022) 

to develop the training data and label 500 images from 3 different scenes (SuDS cameras from 

Carolina Beach, Beaufort, and Down East). Each pixel in each scene corresponds to one of 5 

classes (road, water, building, vegetation, and sky). An example of a SuDs image and the 

corresponding segmentation mask (overlain) is shown above (Figure 6). 

With this training data, we develop several machine-learning models using Segmentation 

Gym (Buscombe and Goldstein, 2022; https://github.com/Doodleverse/segmentation_gym). Our 

goal is to automatically and rapidly analyze imagery using a computer program, versus needing 

time-consuming analysis by an operator. We use the Segformer Model, using 512 x 512-pixel 

input images, a batch size of 8, and train the model for 150 epochs using various augmentations 

on the training samples.  

2.3.2. Depth mapping 

A series of images from a given flood event are first passed through a trained image segmentation 

machine learning model as described above. The original images and their predicted segmentations 

are then converted to real-world coordinates on the NC State Plane following the methodology 

and photogrammetry techniques outlined by the developers of the Quantitative Coastal Imaging 

Toolbox (Bruder & Brodie, 2020). This requires the image, calibration parameters for the camera, 

and a grid of real-world coordinates to project the image onto. 

The first step was to obtain camera calibration parameters, including both intrinsic (i.e. 

internal characteristics of the camera like distortion) and extrinsic (i.e. external characteristics of 

the camera like tilt) parameters. Intrinsic parameters were calculated using a series of images of a 

printed checkerboard pattern captured using a camera and lens of the same make and specification 

as the one deployed in the field. These images were processed using the Open Computer Vision 

Library (Bradski, 2000) in Python to obtain the intrinsic parameters including the focal length, 

principal point, radial and tangential distortion coefficients. 

Extrinsic parameters were calculated using a set of known points in 3D coordinates that 

are present in the camera’s field of view, which we refer to as virtual ground control points (GCPs). 

These GCPs were first selected from the imagery as static objects (e.g. corners of storm drains or 

permanent signposts) and then their real-world coordinates in NAD83(2011)/North Carolina (ft 

US) were collected with a real-time kinematic (RTK) GPS. The surveyed GCPs were manually 

matched to 2D pixel coordinates in a base image and the field of view was then assumed to be 

static for each subsequent image. Each surveyed point and its pixel coordinates were then 

processed using OpenCV to obtain the extrinsic parameters including the rotation matrix (i.e. 

camera’s roll, pitch, and yaw) and translation vector (i.e. camera’s real-world location). 

After collecting the camera calibration parameters, it was necessary to generate a grid of 

real-world points. We used a National Oceanic and Atmospheric Administration (NOAA) LiDAR 

https://github.com/Doodleverse/segmentation_gym
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point cloud dataset with a resolution of 20 cm interpolated to a 5 cm grid in Northing and Easting 

on the North Carolina state plane. 

The images, segmentation predictions, camera calibration parameters and real-world grid 

were then processed using a Python translation of the Quantitative Coastal Imaging Toolbox. This 

process maps pixel values to their corresponding locations in real-world coordinates. The result is 

an array for both the original captured image and its prediction labels corresponding to real-world 

coordinates at 5 cm resolution. 

To analyze the inundation of the roadway, the geo-rectified labels were masked to pixels 

predicted as water by the segmentation model. An important step before calculating the depth of 

the inundation present in the image is to group ponds of water. Without treating each pond 

separately, the later steps of edge extraction and depth calculation could falsely assign greater 

depths to disconnected ponding on the roadway than is accurate.  The ponding algorithm groups 

inundated points and removes groups below a minimum size to exclude minor segmentation errors. 

It then assigns a pond number to each group for further processing. 

To calculate depth, the edges of the pond are extracted using the Scikit Image Library (van 

der Walt et al., 2014). We then select the 95th percentile elevation of these identified pond edges 

as the flood elevation. We assume that any points in the interior of the pond group below the flood 

elevation are inundated and any values above the flood elevation are set to zero. This same process 

is completed for every pond in the image. These pond depths are then combined to create one 

cohesive depth map for the entire image. 
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3. North Carolina road network analysis 

In the results that follow, we present maps that identify the critical nodes – that is, the elevation of 

network failure – for both barrier islands and more inland coastal communities. These maps can 

inform locations for monitoring by NCDOT during disruptions to ensure public safety.  

3.1. Barrier islands 

We analyzed all NC barrier islands and show illustrative results for the 3 barrier islands below: 

Wrightsville Beach, Carolina Beach, and Ocean Isle. Each figure below shows the critical node 

that leads to the fragmentation of the network (red), connected nodes (green), and disconnected 

nodes (blue/black).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Illustrative results and road network diagram for 3 barrier islands - Wrightsville Beach, 

Carolina Beach, and Ocean Isle. 
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Beyond the geographic space, we can examine these results in elevation space (relative to 

the NAVD88 datum) and also explore the size decay of the first and second giant-connected 

components (GCC). In these next figures, the vertical axes show the first (left) and second (right) 

GCC size as a fraction of nodes in the original network, as a function of the fraction of nodes 

removed (q). Red dots mark the critical node in the GCC and link this to the elevation (the bottom 

panel).  

Figure 8. First and second giant-connected component size for Wrightsville Beach. Note that the 

critical node is located at 1.6 m NAVD88 in elevation. Flooding of this elevation would cause the 

network to fracture.  
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Figure 9. First and second giant-connected component size for Carolina Beach. Note that the 

critical node is located at 4.5 m NAVD88 in elevation. This road system is robust to failures. 
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Figure 10. First and second giant-connected component size for Ocean Isle Beach. Note that the 

critical node is located at 2 m NAVD88 in elevation. Flooding of this elevation would cause the 

network to fracture.  
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3.2. Oriental and Pamlico County 

We analyzed Pamlico County and the area around Oriental, NC and showed the results below. We 

pick two different areas of interest, first a smaller area around Oriental and then a larger area that 

makes up most of Pamlico County. Each figure below shows the critical node that leads to the 

fragmentation of the network (in red), connected nodes (green), and disconnected nodes 

(blue/black).  

When analyzing a large area it is important to remember the definition of the critical node, which 

is outlined in Section 2: the critical node is the threshold crossing when the network breaks into 

two large pieces, and strands part of the road network. Specifically, it is when the size of the second 

giant component reaches its maximum proportion of the network. In the larger Pamlico and 

Oriental region analyzed (Figure 11 & 12) are many nodes that – when disconnected – lead to 

large jumps in the second giant connected component (see the peaks in the grey line of Figure 13 

& 14). These peaks occur when important nodes become disconnected. Our analysis is focused on 

identifying the largest jump, but for such a large area there could be multiple nodes that would be 

worth monitoring in the future, because when deactivated they cause large breaks in the network. 

 

Figure 11. Geographic results and road network diagram for a zoomed in area around Oriental, 

NC. The critical node is shown in red.  
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Figure 12. Geographic results and road network diagram for a larger region of Pamlico County. 

The critical node is shown in red. Note the critical node is different from the zoomed-in region 

above, highlighting that the scale, size, and geography of the region of interest impact the location 

of the critical node.  
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Figure 13. First and second giant-connected component size for the smaller, zoomed-in region 

around Oriental, NC. Note that the critical node is located at 2 m NAVD88 in elevation. Flooding 

of this elevation would cause the network to fracture.  
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Figure 14. First and second giant-connected component size for the larger Pamlico County region 

of interest. Note that the critical node is located at 7 m NAVD88 in elevation. Flooding of this 

elevation would cause the network to fracture. This larger region is much more resilient to 

flooding, as more roads connect disparate locations in the larger area of interest.  
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3.3. Davis and Down East Carteret County 

We analyzed the Down East region of Carteret County, as well as a much smaller area around 

Davis, NC and show results below. Each figure below the critical node that leads to the 

fragmentation of the network (in red), connected nodes (green), and disconnected nodes 

(blue/black).  

 

 

 

Figure 15. Geographic results and road network diagram for Davis, NC and the larger Down East 

region. The critical node is shown in red on both maps. Note the critical node is different than the 

zoomed-in region, highlighting that the scale, size, and geography of the region of interest impact 

the location of the critical node. The location identified in Davis informed the placement of our 

SuDS system and TinyCamML device. 
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Figure 16. First and second giant-connected component size for the road network around Davis, 

NC. Note that the critical node is located quite low, ~0.5 m NAVD88 in elevation. Flooding of 

this elevation would cause the network to fracture.  
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Figure 17. First and second giant-connected component size for the entire Down East region. Note 

that the critical node is located quite low again, around 1.5 m NAVD88 in elevation. Flooding of 

this elevation would cause the network to fracture.  

3.4. Kinston 

While the Kinston region was identified during NCDOT meetings as a potential study site, analysis 

of the region was not possible with this technique. More work needs to be done to understand how 

to apply this method to more inland regions that do not have natural boundaries, such as coastal 

edges or other bodies of water that constrain the region of interest. One possible option identified 

is to use travel time metrics or drainage area/basin boundaries, but this is beyond the scope of this 

project.  

3.5. Comparison with TIMS 

TIMS data was not successfully able to be used to validate the network models. Since this data is 

human-reported, it is not a surprise that it is too sparse in space and time to validate the sort of 

very dense network modeling.  

3.6. Evaluation of other vulnerability metrics 

As discussed during our final Team meeting with NCDOT personnel, due to Dr. Beth Sciaudone’s 

departure from the project, our ability to evaluate other vulnerability metrics, including the 

distance to the ocean shoreline, could not be met. Additionally, it was deemed that these metrics 

were not desired by NCDOT personnel as part of the network analysis. 
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4. Land-based measurements of roadway flooding 

Due to the timeline of the project, continuous data sets are just now becoming available in Down 

East Carteret County for testing the network model. Here, we describe two additional use cases of 

the flood data collected by sensors supported by this project.     

4.1. Sunny Day Flood Sensors: statewide comparison against tide gauges 

The following text comes from the paper “Land-based sensors reveal a high frequency of coastal 

flooding” by Hino, Anarde, et al. (2025), which is in press in Nature Communications Earth and 

Environment. All methods related to the statistical analysis of flood and tide gauge data are 

included in the supplement of this publication and not restated here for simplicity. 

In this paper, we provide new estimates of flood frequency in three coastal communities based on 

a custom, open-source network of sensors on land (Gold et al., 2023) and compare our measures 

against tide gauge-based estimates. The flood sensors, deployed either in stormwater drains or just 

adjacent to roadways, measure the presence and depth of water on land from all sources, including 

tides, wind, waves, rain, local infrastructure, and groundwater. By capturing the full range of 

floods regardless of source, these measures enable a novel perspective on the frequency of coastal 

flooding and the relative accuracy of commonly used tide gauge threshold exceedances. Given the 

growing scientific use of tide-gauge data as a measure of coastal flooding (e.g., Dahl et al., 2017; 

Hauer et al., 2023; Hino et al., 2019), this analysis provides critical empirical grounding for 

researchers.  

We measured flooding over one year using the SuDS in three coastal communities 

spanning a range of physical and social settings. Beaufort, North Carolina (NC), USA and Carolina 

Beach, NC are small urban communities with subterranean drainage infrastructure, while Sea 

Level, NC is rural and relies on drainage ditches. The three sites also vary in their proximity to 

tide gauges. The sensors were deployed in flood hotspots identified by community members as 

causing disruptions. By comparing data across three sensors in a single region, we characterize 

how flood frequency varies with small changes in geography.   

We compare the in-situ flood measures (water depth and photographs) to data from the 

nearest tide gauge to assess how flood frequency varies from tide gauge threshold exceedances. 

The two thresholds we use are the National Weather Service’s minor flood threshold, which is 

often used to issue coastal flood advisories and warnings, and NOAA’s high-tide flood (HTF) 

threshold. NOAA’s HTF thresholds provide a nationally consistent approach based on local tidal 

ranges but are not calibrated to match flood incidence on land (Sweet et al., 2018). We define 

flooding as any amount of water on the road, and similarly, any instance of water level above the 

relevant tide-gauge threshold is classified as an exceedance. The tide-gauge thresholds differ from 

road elevations because the thresholds are used for purposes other than flood monitoring (e.g., 

statistical analysis of nationwide trends in Sweet et al., 2018). By analyzing how our sensors and 

gauge-based indicators diverge, we assess how the impacts of tides, wind, rain, and local 

infrastructure vary across our study sites. 
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Over one year from May 1, 2023, to April 30, 2024, we detected 26, 65, and 128 days of 

flooding on roadways in Beaufort, Carolina Beach, and Sea Level, respectively. Very few of these 

floods were associated with extreme storm events. Excluding floods coinciding with extreme 

storms – specifically, Tropical Storm Idalia on Aug 30-31, Ophelia on Sep 22-24, and the 

Nor’easter on Dec 17-18 – our annual flood frequencies decrease to 20, 60, and 122 days. Herein, 

we focus on floods and threshold exceedances outside of extreme storms. 

 

 
Figure 18. Exceedances of tide gauge thresholds do not accurately reflect flood frequency on land. 

Exceedances of the NOAA HTF threshold are consistently lower than actual flood events at our 

three sites, while exceedances of the NWS threshold are more frequent than flooding in Beaufort 

and Carolina Beach and less frequent than flooding in Sea Level. This pattern applies when 

measured in days (Panel B) and hours (Panel C). Plots show data for one year from May 1, 2023 - 

April 30, 2024. 

 

Documented flood frequencies diverge substantially from tide gauge threshold 

exceedances (Figure 18b-c). At all three locations, flooding occurred more often than NOAA HTF 

exceedances. Water levels exceeded HTF thresholds on just nine days at the gauge nearest to 

Beaufort and Sea Level and on one day at the Wilmington gauge near Carolina Beach. While 

NOAA HTF exceedances consistently underestimate flood frequency, exceedances of the NWS 

minor flooding threshold show no consistent relationship with observed flooding. In Beaufort and 

Carolina Beach, the NWS threshold was exceeded more often than flooding occurred, but the 

opposite was true at Sea Level. Depending on the chosen threshold (NWS or NOAA HTF), tide 

gauge threshold exceedances could substantially overestimate OR underestimate flood frequency. 

For example, the Wilmington NWS threshold was exceeded on 140 days, more than twice as often 

as we documented flooding in Carolina Beach. On the other hand, Sea Level flooded 122 days, 

compared to 31 days for NWS exceedances and 9 days for NOAA HTF exceedances (using the 

Beaufort gauge).  

Actual flood durations are generally longer than the duration of threshold exceedances for 

both NWS and NOAA HTF thresholds (Figure 19). Flood durations are also longer in rural settings 

than in urban settings for the locations examined here. Our average flood duration was 1.71 hours 

(standard deviation: 1.2 hours) in Beaufort (urban) and 3.35 hours (SD: 2.19) in Sea Level (rural), 
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compared to average threshold exceedances of 1.25 hours (SD: 0.70) for the NOAA threshold and 

1.70 hours (SD: 0.79) for the NWS threshold at the Beaufort tide gauge. Floods averaged 2.28 

hours (SD: 0.84) in Carolina Beach (urban), compared to 0.35 hours (SD: 0.35) and 1.91 (SD: 

0.99) hours for an average NOAA HTF or NWS exceedance at the Wilmington tide gauge. The 

differences in measured durations and tide gauge threshold exceedances are due to 1) thresholds 

not being exceeded during long flood events (discussed in more detail below), and 2) relatively 

slow drainage of floodwaters on land (over low-sloping landscapes, through stormwater 

infrastructure, and groundwater infiltration) versus marine water bodies. The slow recession of 

floodwaters is particularly pronounced in rural settings. For the same flood depths, flood durations 

at Sea Level are generally 2-3 times longer. 

The discrepancies between flooding on land and tide gauge threshold exceedances shown 

here are not solely due to tide gauge thresholds being too high or too low; rather, they are caused 

by marine water levels varying over small distances and land-based flood drivers that cannot be 

captured at tide gauges. The effect of land-based drivers is particularly evident in Beaufort, where 

the tide gauge and sensor are just 0.6 miles apart. There, the NOAA HTF threshold is 3.23 ft, the 

NWS minor flood threshold is 2.92 ft, and the elevation of the road is 2.58 ft (all referenced to 

NAVD88). Using the NOAA HTF threshold, as shown in Figure 19, several flood events are only 

detected by the sensor (purple dots), suggesting the threshold may be too high. However, there are 

also five “gauge-only” events (i.e., instances where the tide gauge exceeds the threshold but no 

flooding is observed at the sensor location). If we lower the threshold to match the road elevation, 

the number of gauge-only events increases to 76. Some of these gauge-only events are likely due 

to a backflow prevention device at the outfall of the monitored storm drain, which limits water 

moving through the pipes onto the road when marine water levels are high. The effects of 

stormwater infrastructure cannot be captured at gauges, so modifying the tide gauge threshold does 

not necessarily improve the fit between threshold exceedances and actual flooding. Modifying the 

tide-gauge threshold to match the road elevation in Sea Level, which is approximately 20 miles 

from the nearest tide gauge, causes similar mismatches described in more detail below.  

In addition to local infrastructure, non-tidal flood drivers contribute substantially to the 

mismatch between actual flooding and tide gauge threshold exceedances. Our site-specific studies 

that utilize data from the same flood sensors in Beaufort (Gold et al., 2023) and Carolina Beach 

(Thelen et al., 2024) show that rain, falling on stormwater networks impaired by high marine water 

levels, contributes significantly to flooding (for the periods analyzed, 30% of floods in Beaufort 

and 35% in Carolina Beach had contributions from rainfall). The impacts of rain and local 

infrastructure on flooding cannot be captured at tide gauges, so modifying the tide gauge threshold 

would not resolve this discrepancy.  

Finally, variation in marine water levels across small distances also drives discrepancies 

between observed flooding and tide gauge threshold exceedances. Wind commonly increases 

water levels in the northeast U.S. (Li et al., 2022), and in NC, small changes in geography modify 

the relative importance of wind to local water levels. The Beaufort sensor and tide gauge are 

approximately 19 miles from the Sea Level sensor, but flood frequency differs by an order of 
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magnitude: 20 days in Beaufort and 122 days in Sea Level. Sea Level is on a low-lying peninsula 

within an elongated estuary where water levels can pile up from wind forcing from several 

directions (Figure 18a). During two long floods at Sea Level that were not accompanied by a 

NOAA HTF exceedance, wind speeds averaged over 20 mph from the southwest during one event 

and the northeast during the other.  

 

   
Figure 19. A comparison of flood events and NOAA HTF threshold exceedances shows frequency 

and duration mismatches between data across all seasons in (a) Beaufort, (b) Carolina Beach, and 

(c) Sea Level. Plots compare the incidence and duration of events as documented by the flood 

sensors (circles) and as inferred by tide gauge exceedances using the NOAA HTF thresholds 

(triangles). Circles are purple for events that were only captured by the flood sensors. Connected 

light green circles and triangles represent events that were captured by the flood sensors and also 

inferred by NOAA HTF exceedances. Triangles are dark green for events only inferred by NOAA 

HTF exceedances (not measured by flood sensors).  
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Because of local variation in water levels, modifying the tide-gauge threshold to match the 

Sea Level roadway elevation does not resolve the mismatch between tide-gauge threshold 

exceedances and flood events. The road at Sea Level is at 1.62 ft NAVD88, significantly lower 

than the tide-gauge thresholds (2.92 ft for NWS and 3.23 ft for NOAA). The tide gauge exceeded 

1.62 ft NAVD88 on 316 days during our one-year study period (excluding extreme storm days), 

while flooding only occurred on 122 days. Hence, marine-based contributions to floods vary 

substantially even over small distances, and they are not adequately captured by a sparse gauge 

network. 

Our results demonstrate the many benefits of measuring water levels on land rather than 

relying on tide gauge-based estimates for understanding community exposure to coastal flooding. 

Data from custom sensors show that tide gauge threshold exceedances can underestimate flood 

frequency by an order of magnitude and that both the timing and duration of events are not 

accurately reflected in tide gauge data. Studies from other regions using land-based observational 

data have found similarly high frequencies of coastal flooding, suggesting that tide gauge threshold 

exceedances are likely problematic proxies for floods elsewhere as well (Mydlarz et al., 2024; 

O’Donnell et al., 2024; Kang et al., 2024). Neither the NOAA nor NWS thresholds are designed 

to perfectly reflect flood incidence; they are used by the respective agencies for different purposes, 

and regional tide gauges cannot capture hyper-local variation in flood frequency. Moreover, 

regardless of the threshold, tide gauges will not reflect the influences of rain and local 

infrastructure on flood incidence. Our findings highlight that tide gauge-based indicators are 

problematic as measures of coastal flood frequency, not because of the specific threshold, but 

because of the other flood drivers that are not captured by tide gauges.  

Land-based measures of flooding can capture the effects of local drainage infrastructure, 

rain, and groundwater, all of which are integral to accurate flood depth and duration measures. 

Such measures can also provide critical input to build on existing coastal water level modeling 

efforts, many of which capture several, but not all of these drivers (Serafin and Ruggiero, 2014; 

Rinaldo et al., 2020; Rose et al., 2024; Thelen et al., 2024). Remotely sensed observations of non-

storm flooding can enable characterization of extent at regional scales, building on the point-source 

measures described here. At the same time, other observational data streams to capture marine 

water levels, wind, and rain are needed to decompose location-specific flood drivers. For example, 

it is possible that due to the condition of local infrastructure, flooding is driven entirely by rain 

ponding and has no relationship to tides or other marine drivers. Richer observational records can 

also help inform the development of more accurate coastal flooding thresholds (e.g., Mahmoudi et 

al., 2024).  

Coastal flooding will become much more frequent and widespread due to sea-level rise 

(Sweet et al., 2022), and evidence of the incidence and impacts of such floods is critical for 

effective adaptation. Developing and using land-based flood measures is needed to more 

accurately reflect the true exposure and experiences of coastal residents and to identify areas most 

affected by chronic flooding.  
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4.2. TinyCamML proof-of-concept: November 2024  

The following text comes from the manuscript “Detection of coastal flooding with TinyCamML: 

a low-cost, privacy-preserving camera with onboard ML” by Farquhar, Goldstein, et al. (in prep) 

which will be submitted to Earth and Space Science in May 2025. All methods related to this 

publication are included in Section 2. 

We demonstrate the utility of the TinyCamML in sensing roadway flooding during a series 

of floods in Carolina Beach, NC, that took place from November 14–18, 2024. Four TinyCamMLs 

were deployed along a single roadway: Canal Drive. The floods were driven in part by perigean-

spring tides (when the moon is either new or full and closest to Earth in its orbit), as well as rainfall. 

From November 11–18, 1.8 cm of precipitation fell across the region (as measured by the Coastal 

Ocean Research Monitoring Program Masonboro Island weather station, located about 5 km from 

Canal Drive), with 1.63 cm inches of rain falling on November 14 alone, which contributed to 

several compound flood events.  

We compare the ML classification (e.g., “flood” or “no flood”) of each TinyCamML 

against user (visual) confirmation of flooding from each photo. As was the case in the training 

data, an image was labeled as “flooded” when the water extended across the crest of the road such 

that a car could not use the roadway without driving through water. The TinyCamMLs were 

deployed at three locations along a 1 km stretch of Canal Drive where there are existing water 

level sensors located in storm drains (i.e., part of the SuDS network; Gold et al., 2023). The water-

level data from each gauge is plotted against the TinyCamML data in Figure 21 to provide context 

for flood depth and duration. 

 Example imagery from the TinyCamMLs during various conditions throughout the 

deployment is shown to demonstrate the effect that environmental conditions (e.g., rain, sunlight) 

may have on the image classification (Figure 20). The photo in I shows a correct classification of 

“flood” by TinyCamML 2 during a clear sunny day (tidal flood event). In II, the image was taken 

at the transition between “no flood” and “flood,” where the floodwaters had just barely extended 

over the crest of the roadway on the right side of the photo (the yellow solid line). TinyCamML 1 

classified this image as “no flood,” when labeler identification would consider this a “flood.” In 

III, there are puddles on the roadway that we do not consider to be a “flood” because they do not 

extend across the crest of the road, but TinyCamML 3 classified it as one. Image IV demonstrates 

how water droplets look when impeding the TinyCamML’s view (compound rainfall event); 

however, despite this, TinyCamML 4 correctly classified this image as “no flood.”  

We compare time series of water levels from SuDS sensors (mounted within storm drains) 

against the classifications of the TinyCamMLs and visually-confirmed user-labeled images 

(Figure 21). There are large gaps in the reporting records of TinyCamMLs 1 and 2 because they 

were earlier designs and therefore had issues with reporting consistency. Since then, all 

TinyCamMLs have been updated to the most recent design and are performing as expected. We 

include example imagery from TinyCamMLs 1 and 2 here because their field of view is distinctly 

different from the other cameras. Collectively, for the data shown in Figure 21, the TinyCamMLs 
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classified images as “flooded” when there was a visually-confirmed flood 90% of the time, 

excluding “too dark” imagery. When there was not a visually-confirmed flood, the TinyCamMLs 

reported “flood” 26% of the time (i.e., a “false positive”). 

 

 
 

Figure 20. Example imagery from the TinyCamMLs in different flood conditions during 

November 14-18, 2024 along three different locations on Canal Drive in Carolina Beach, NC. 

TinyCamML 1 and 2 were at the same location facing different directions 
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Figure 21. TinyCamML classifications compared with the user-labeled images, plotted against 

water levels above and below the edge of the pavement, recorded within storm drains (Gold et al., 

2023). The green vertical lines indicate when the images in Figure 20 were taken. 
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Figure 22. Confusion matrix of the classifications by the TinyCamMLs during the November 14-

18, 2024 deployment. The larger number in each box indicates the sum of the number of 

classifications by each individual TinyCamML, which is color coded. 

 

 We use a confusion matrix to further assess the performance of the ML model for the 1574 

images taken during the November 14-18, 2024, deployment and show aggregate data as well as 

individual camera data (Figure 22). Across all four cameras, this deployment had an 81% accuracy, 

a 72% precision for detecting floods, and a 90% recall for detecting floods. When looking at all 

four cameras, the model was generally strong at predicting floods with only 66 false negatives 

(i.e., instances where there was flooding but the model predicted “no flood”). However, the model 

tended to overpredict flooding with 237 false positives (i.e., instances of no flooding where the 

model predicted “flood”). This general trend was seen in the data from TinyCamMLs 1-3. 

TinyCamML 4 had many false negatives and very few false positives.  

 Lastly, we performed an inter-rater agreement experiment with two labelers for this dataset 

to better understand consistency in labels. This dataset and its labeling was not used for training 

the classification model. We used Krippendorff's Alpha to calculate agreement, where a score of -

1 indicates no agreement, a score of 1 indicates total agreement, and a score of 0 being chance 

agreement (Krippendorff, 1970). TinyCamMLs 1-4 had a Krippendorff value of 0.98, 0.92, 0.59, 

and 0.94, respectively. 

Here we demonstrated the ability of the TinyCamML, a new open-source ML camera that 

both preserves privacy and offers low data transmission cost, in classifying roadway flooding 

under variable environmental conditions. Four TinyCamMLs deployed along a single road in 

Carolina Beach, NC, successfully identified flooding over a four day period 90% of the time (as 

compared to visually-confirmed user-labeled images; Figure 21). However, the TinyCamMLs also 
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reported false positives; the classification model reported flooding when there was not visually-

confirmed flooding 26% of the time. The on-device ML model is continually being trained and 

improved upon, so we expect the number of false positives (and false negatives) shown in Figure 

22 to decrease as more data is captured and used for training. Based on the confusion matrix, the 

models are generally performing in a manner where they do not miss detecting a flood (low false 

negatives), but tend to have false alarms (higher false positives). Depending on the specific 

deployment scenario, this may be more or less preferable.   

The accuracy of the TinyCamML in predicting roadway floods was only calculated for a 

single definition of flooding – that is, when the water extended across the crest of the roadway 

such that a car could not pass without going through water. Using our definition of flooding, there 

were instances where the TinyCamMLs did detect water on the road and reported “flood,” but 

because the water was not fully covering the roadway, the labeler determined those instances as 

“no flood,” such as in image III of Figure 20. The TinyCamMLs reported false negatives 10% of 

the time, but again, many of these instances occurred during the transition between the roadway 

being dry to fully inundated at the centerline (Figure 20, image II). While the model performance 

is indeed sensitive to our chosen definition of flooding, the definition used here provides insight 

into when a roadway potentially becomes a depth hazard for vehicles (e.g., in 30-40 cm of water, 

a vehicle can float; Martínez-Gomariz et al., 2016), or for the case of tidal floods, when damage 

to vehicles is likely due to splashing from saltwater. Images that showed persistent puddles and/or 

this transition seem to be edge cases for the TinyCamML that will likely improve with further ML 

model training. Importantly, model accuracy, as well as the number of images needed to train the 

model to reach that accuracy, may differ for other definitions of flooding (e.g., any amount of 

ponding on the road, as used by Hino et al., 2025). 

Overall model accuracy is also highly dependent on the deployment location and field of 

view. TinyCamML 3 had the highest individual percentage of false positives, but its field of view 

contained many large persistent puddles. As shown in Figure 21, TinyCamML 3 reported “flood” 

even after the water levels had receded because these puddles stayed on the roadway. For our 

interrater experiment with non-training data, TinyCamML 3 also had the lowest Krippendorff 

value (0.59) between labelers, which is likely also due to persistent puddles and the difficulty of 

determining exactly when the puddles connect enough to become classified as a flood. Despite 

this, a Krippendorff value of 0.59 is still comparable to other interrater agreement experiments in 

the coastal sciences (Goldstein et al., 2021). For the images from TinyCamMLs 1, 2, and 4, the 

labelers showed near complete agreement (0.98, 0.92, and 0.94), and these fields of view were 

typically devoid of persistent puddles.  

More work is needed to determine how well our ML model generalizes to other 

environments that experience roadway flooding (e.g., in rural communities or more urban 

settings), and how the model accuracy might change under different environmental forcing 

conditions. Here, we showed that the TinyCamMLs can successfully classify roadway floods even 

during rainfall events when droplets obstruct the images (e.g., for TinyCamML 3 and 4 on 
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November 14, 2024; Figure 21). It is unknown how changes in solar glare, shadows from large 

buildings, or vegetation changes may influence our model classifications and accuracy. Future 

deployments will be tailored toward development of a large, generalized training dataset with 

many different fields of view and spanning more environmental variables.  

We envision several use cases for edge ML devices like the TinyCamML beyond spatial 

identification of roadway floods. First, since our device reports its classifications in real time to a 

website, and because the devices are low-cost, a network of TinyCamMLs can be used for real-

time monitoring of transportation hazards. In the context of flooding, this type of sensor network 

could be used for real-time routing of emergency vehicles around flooded areas, and provide data 

to validate models of the impacts of flooding on road networks (e.g., Aldabet et al., 2022). The 

TinyCamML hardware and classification model can also be adapted to other monitoring and 

measuring tasks focused on difficult-to-observe, or ephemeral, environmental phenomena. In 

coastal settings, this could include binary classification of dune erosion, extreme run-up, impacts 

to structures, and other storm driven processes. In non-coastal settings, TinyCamMLs may be 

modified to observe extreme water levels in streams (similar to Latham et al., 2025 and Loftis et 

al., 2018), identify landslides, and early detection of wildfires (e.g., Shi et al., 2020), avalanches 

(e.g., Fox et al., 2024), or a range of other processes.  

As coastal communities will experience more chronic flooding with rising sea levels, data 

on flood incidence, extent, and duration will become increasingly important for informing risk 

assessments and developing flood mitigation strategies (Albano et al., 2017; Van Alphen et al., 

2009). The TinyCamML is an important advancement in low-cost, privacy preserving monitoring 

technology that enables identification of flooding in places where investment in in-situ sensors 

may not have been historically prioritized: on land or in residential areas, where people interact 

with floodwaters most. 
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5. Machine learning tools for flood identification from imagery 

The following text comes from the manuscript “Quantification of chronic coastal flooding: a 

machine-learning driven approach to water level extraction” by McCune, Anarde et al. (in prep) 

which will be submitted to Water Resources Research in August 2025. All methods related to this 

publication are included in Section 2. 

5.1. Segmentation model 

 Results from training the segmentation model demonstrated that the model showed good 

performance - for the validation subset, the Mean Intersection over Union (IoU) score was 0.692 

(varies from 0-1, where 1 is perfect). The mean Dice scores were 0.739 (varies from 0-1, where 1 

is perfect), and the Mean KLD scores were 0.991 (varies from 0-1, where 1 is perfect).  

 

Figure 23. Training loss curve for the segmentation model over 30 training epochs with training 

loss noted in blue and validation loss noted in black.  

 An example model output can be shown below. These results are promising and 

demonstrate the model can capture roadway flooding from SuDs Imagery. Individual models made 

for each of the three sites (Down East, Carolina Beach, and Beaufort) show comparable results.  
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Figure 24. Example segmentation model results from Carolina Beach SuDS camera (left) and the 

segmentation label overlay created by the ML model (right): red is road, blue is water, yellow is 

building, purple is vegetation, and green is sky. 
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5.2. Spatial extent of flooding  

Quantification of flood spatial extent of imagery is shown below using two methods. The first is a 

simple pixel-space estimate of flooding from segmented imagery while the second is a calculation 

from the geo-rectified imagery produced during the depth mapping method described in Section 

2.4. The pixel-based estimate counts the number of pixels identified in the segmented image as 

water on the roadway. One drawback to the pixel-based approach is that the amount of area 

represented by each pixel changes as you move further away from the camera, meaning that pixels 

far away from the camera when flooded indicate a greater flooding extent than the same number 

of pixels close to the camera. So, this method can provide a misleading representation of flooding 

extent. For example, in the result provided below, the smaller cross-street extending away from 

the camera can be impassable with only about 30% of all roadway pixels in the image predicted to 

be water, whereas the main street running across the field of view is entirely flooded at about 90% 

of roadway pixels predicted to be water. This result could be further refined for specific locations 

by creating transects of pixels on portions of the roadway image to track the inundation of those 

roadway transects as percentages.  

The second method calculates the spatial extent of the flood by counting the number of 

grid cells identified as water on the grid of a known resolution created as part of the geo-

rectification process. This is a result of real-world coordinates with a defined area quantity (e.g. 

square meters) rather than the simple percentage obtained through the pixel-space approach. 

 

 

Figure 25. An original image from Carolina Beach (left) and the segmentation overlay (right) with 

the total number of pixels identified as water and the percentage of roadway pixels predicted to be 

water.  
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Figure 26. (a) Depth map of flooding in real-world coordinates on a 5 cm resolution grid. Spatial 

extent is denoted in square meters in the upper left and the color bar indicates depth in meters. 

Virtual sensor locations are shown with unique symbols. (b) The plot of the water level time series 

with the solid blue line indicates observations from the SuDS. Virtual sensor water depths are 

plotted using their unique symbols from the map in (a). The purple diamond is the virtual sensor 

stationed as close to the SuDS as possible in the field of view.  

 

 

 

Spatial Extent (m2): 268.2 
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5.3. Mapping flood depths spatially 

Results for the flood depth mapping approach are shown for Carolina Beach above. As 

discussed above, the spatial extent of flooding can be calculated for each image and is displayed 

in the upper left corner of each output. The flood depth map generated following the methodology 

discussed in Section 2 is also shown. An additional utility of this method is the ability to track 

water levels at “virtual sensors” which is a matter of tracking the water depth at a particular grid 

location throughout of the imagery. In the example result below, we show how these virtual sensors 

can be located at any point of interest in the image (e.g. in the center of the roadway). This provides 

a similar water level time series as other traditional approaches to observing roadway inundation 

and can be used to track critical points of interest within the field of view. 
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6. Outcomes 

In this project we used network science to identify key intersections in coastal roadway networks 

that if inundated, result in fracturing of the network. Through this work, we provided NCDOT 

with a methodology that can be used in planning efforts to identify nodes/intersections in any road 

network – including inland areas – that enhance vulnerability of the entire network based on a 

single metric (here, elevation). Additionally, we provided new land-based measures of roadway 

floods with in situ sensors and cameras, and new methods that automate detection of flooding on 

roadways from images using computer vision and machine learning. The in situ measures of 

flooding provide real-time information of flooding on land in coastal communities across the state 

(sunnydayflooding.com). These land-based sensors reveal that it is flooding on roadways ~25-125 

days per year in coastal communities, which is far less than what is inferred based on tide gauge 

data (~1-10 days per year). This means that roadway accessibility is impaired much more 

frequently than previously thought. 

Products that emerged from this work include novel software and models, maps, data and 

monitoring networks, peer-reviewed publications and manuscripts, as well as professional 

development. Specifically, the outcomes include: 

1. Three open-source models: 

• Road networks model: 

https://github.com/NCRoadNetworks/NC_barrier_roadnetworks 

• TinyCamML binary classification model (flood/no flood): 

https://github.com/TinyCamML 

• Image segmentation model for roadway floods (% flooded): 

https://github.com/Doodleverse/segmentation_gym 

2. Maps and rankings of vulnerable network intersections based on our analysis 

 

3. New camera feeds and water level sensors 

• Water-level data is integrated into FIMAN  

• New website, with input from NCDOT personnel: sunnydayflooding.com 

4. Two chapters in PhD theses, 5 undergraduate research projects 

 

5. Leveraged funding 

The following outcomes are still in development: 

1. Depth map algorithm: https://github.com/rtmccune/depth_mapping 

• Description of limitations 

• Utility at other locations: Sea Level & New Bern 

 

https://github.com/NCRoadNetworks/NC_barrier_roadnetworks
https://github.com/TinyCamML
https://github.com/Doodleverse/segmentation_gym
https://github.com/rtmccune/depth_mapping
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